
th vmur4OVA

Summary and Results
Versin 1.0.

L

UNLTHITED - I1NI.1 AQTItTM
SECUNITY CLASSIFICATION OF TIS PAGE

REPORT DOCUMENTATION PAGE
1. REPORT S94"UITY CLASSIFICATION %b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
3m SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
21L DECLASSIF ICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED
NIA

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-27 ESD-TR-87- 190

Be. NAME Of PERFORMING ORGANIZATION b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION
(if applicable.)

SOFTARE TNERINGSEISEI JOINT PROGRAM OFFICE
ft. ADDRESS (City. State end ZIP Code) 7 b. ADDRESS (City. Slatw and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

ft. NAME Of FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (it applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885CO003

Se. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELE ME NT NO. NO, NO. NO.

PETTTRRChH. PA 15213 1N/A I N/A I N/A
11. TITLE (include Secumity Claaaagicalion)

ADA PERFORMANCE BENCHMARKS ON THE MICROVAX II SUMMARY A1D RESULTS KVERSION 1.D
12. PERSONAL AUTI40R(SI
PATRICK DONOHOE

13.. TYPE OF REPORT 13b. TIME COVERED 14 AEO EORT (yr., Mo.. Day) 15. PAGE COUNT

FINAL FROM ____TO ____DECEMBER 1987 4
1S. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TERMS (Con tinuae on .'euerse if' necessary and identity by block number/

FIELD GROU SUB GR.ADA, BENCHMARKS, PERFORMANCE, MICROVAX II

19. ABSTRACT (Continue on reuvere if neceary and Identify by block number i

Abstract: This report documents the results obtained from running the University
of Michigan and the ACM SIGAdla Performance Issues Working Group (PIWG)
Ada performance benchmarks on a DEC VAXELN MicroVAX 11 using the DEC
VAXELN Ada compiler. A brief description of the benchmarks and the test envi-
ronment is followed by a discussion Of some problems encountered and lessons
learned. The Output of each benchmark program is also included.

20. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

UNCLASSIFIED/UNLIMITED 1.1 SAME AS APT 0OTIC USERS UUNCLASSIFIED, UNLIMITED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER j22c. OFFICE SYMBOL
(Include A nra CodeiKARL SHINGLER (412) 268-7630 SEI JPQ

DD FORM 1473.83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

6;I

Technical Report
CMU/SEI-87-TR-27

ESD-TR-87-1 90
December 1987

Ada Performance Benchmarks on the
MicroVAX 11:

- Summary and Results
Version 1.0

wi

Patrick Donohoe
Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The Ideas and findings In this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
Information exchange.

Review and Approval

This report has been reviewed and Is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

This dowment is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Ann: FDRA, Cameron Station. Alexandria, VA 22304-6145.

Copies of this document am also available tough the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield. VA 22161.

Ada is a registered trademark of the U.S. Department of Defense, Ada Joint Program Office. DEC, MicroVAX, VAX. VAXELN,
and VMS are trademarks of Digital Equpment Corporation.

Table of ContentsU
1. Summary 1
2. Discussion 2

2.1. The University of Michigan Ada Benchmarks 2
2.2. The Performance Issues Working Group (PIWG) Ada Benchmarks 2

* 2.3. Testbed Hardware and Software 2
2.4. Running the Benchmarks 3
2.5. Problems Encountered and Lessons Learned 3

References 7

Appendix A. Results: University of Michigan Benchmarks 9
A.a. Clock Calibration and Overhead 9
A.b. Task Rendezvous 10
A.c. Task Creation 10
A.d. Exception Handling 11
A.e. Time and Duration Math 12
A.f. Delay Statement Tests 13
A.g. Dynamic Storage Allocation 14
A.h. Subprogram Overhead 16

* A.i. Memory Management 24

Appendix B. Results: PIWG Benchmarks 25
B.a. Composite Benchmarks 26

B.0.0.1. The Dhrystone Benchmark 26
* B.0.O.2. The Whetstone Benchmark 26

B.0.0.3. The Hennessy Benchmark 26
B.b. Task Creation 27
B.c. Dynamic Storage Allocation 28
B.d. Exception Handling 29

L B.e. Coding Style Acoession For 30
B.f. Loop Overhead NTIS GRA&I v 30
B.g. Procedure Calls DTIC TAB 0 31
B.h. Task Rendezvous Unawnouneod 5 33Justification

By
Distribution/

Availability Codesrvail and/or
Dist Special I

CMU/SEI-87-TR-27

Ada Performance Benchmarks on the
MicroVAX I1: Summary and Results
Version 1.0

Abstract: This report documents the results obtained from running the University
of Michigan and the ACM SIGAda Performance Issues Working Group (PIWG)
Ada performance benchmarks on a DEC VAXELN MicroVAX II using the DEC
VAXELN Ada compiler. A brief description of the benchmarks and the test envi-
ronment Is followed by a discussion of some problems encountered and lessons
learned. The output of each benchmark program is also included.

1. Summary/

The primary purpose of the Ada Embedded Systems Testbed (AEST) Project at the Soft-
ware Engineering Institute (SEI) is to develop a solid in-house support base of hardware,
software, and personnel to permit the investigation of a wide variety of issues related to
software development for real-time embedded systems. Two of the most crucial issues to
be investigated are the extent and quality of the facilis provided by Ada runtime support
environments. The SEI support base will m essments possible of the readiness of

evelop embedded systems.

The benchmarkingAnstrumentation subgroup was formed to:

1) Collect and run available Ada benchmark programs from a variety of sources
on a variety of targets,

-j Identify gaps in the coverage and fill them with new test programs.
Review the measurement techniques used and provide new ones if necessary. ' -

L4 Verify software timings by inspection and with specialized test instruments.) - & -

This report documents the results obtained from running Ada performance benchmarks on a
DEC VAXELN MicroVAX II using the DEC VAXELN Ada compiler. The benchmarks were
the University of Michigan Ada benchmarks and the ACM SIGAda Performance Issues
Working Group (PIWG) Ada benchmarks (excluding the compilation tests). A description of
these suites and the reasons for choosing them are given in [9]. The benchmarks focus
largely on the execution time of specific features of the Ada language; they do not, for ex-
ample, measure the efficiency or the size of the generated object code. A brief description
of the benchmarks and the test environment is followed by a discussion of some problems
encountered and lessons learned. The results obtained from running the entire Michigan
and PIWG benchmark suites are contained in the appendices to this report. Note that the
caveats discussed in the body of the report must be borne in mind when examining these
results.

CMU/SEI-87.TR-27

2. Discussion

2.1. The University of Michigan Ada Benchmarks
The University of Michigan benchmarks concentrate on techniques for measuring the perfor-
mance of Individual features of the Ada programming language. The development of the
real-time performance measurement techniques and the interpretation of the benchmark
results are based on the Ada notion of time. An article by the Michigan team [4] begins by
reviewing the Ada concept of time and the measurement techniques used In the
benchmarks. The specific features measured are then discussed, followed by a summary of
the results obtained and an appraisal of these results. A follow-up letter about the Michigan
benchmarks appears in [3].

2.2. The Performance Issues Working Group (PIWG) Ada Benchmarks
The PIWG benchmarks comprise many different Ada performance tests that were either col-
lected or developed by PIWG under the auspices of the ACM Special Interest Group on Ada
(SIGAda). In addition to language feature tests similar to the Michigan benchmarks, the
PIWG suite contains composite synthetic benchmarks such as Whetstone [5], [10];
Dhrystone [11]; and a number of tests to measure speed of compilation. PIWG distributes
tapes of the benchmarks to interested parties and collects and publishes the results in a
newsletter. Workshops and meetings are held during the year to discuss new benchmarks
and suggestions for improvements to existing benchmarks. 1

2.3. Testbed Hardware and Software
The hardware used for benchmarking was a DEC MicroVAX II host, running MicroVMS 4.4,
linked to a MicroVAX II target. The target had five megabytes of RAM, a dual floppy disk
drive, and was linked to the host via DECnet. Programs on the target machine ran under
control of the VAXELN kernel, an executive providing job and process scheduling on a
prioritized pre-emptive basis [6], [7]. The hardware and software can be summarized as fol-
lows:

Host: DEC MicroVAX II, running MicroVMS 4.4
Compiler: DEC VAXELN Ada, release 1.1 (DEC VAX Ada 1.3), ACVC 1.7
Target: DEC MicroVAX II with VAXELN 2.3,5Mb RAM

The complete VAXELN tool kit is a software product for the development of real-time sys-
tems for VAX processors. It provides most of the standard VAX/VMS development tools,
such as the VAX Ada Compilation System (ACS), and includes a VAXELN Ada runtime
library and a VAXELN remote debugger. The remote debugger can be used to download
and activate programs on the target, whether or not they have been compiled with the de-

1The benchmarks came from the PIWG distribution tape known as TAPE_8_31_86. The name, address, and -

telephone number of the current chairperson of the PIWG can be found in Ada Letters, a bimonthly publication of
SIGAda, the ACM Special Interest Group on Ada.

2 CMU/SEI-87-TR-27

bugger option. The VAXELN Ada compiler [8] Is substantially identical to the VAX Ada com-
piler, with the exception of some pragmas (e.g., VAXELN Ada does not support the
TIMESUCE pragma) and VAXELN Ada's lack of relative and indexed file support. The
host-based development tools are used to create an application program and build a
VAXELN executable target system that can be booted on the target machine from a floppy
disk or tape, or downloaded to the target via DECnet.

2.4. Running the Benchmarks
Both the Michigan and PIWG benchmark suites contained command files for compiling and
running the tests under VAXNMS. The Michigan benchmarks had a command file for each
category of tests (e.g., one for rendezvous tests, one for exception handling tests), whereas
the PIWG suite had a single command file that could be adapted to run any test. The
Michigan command files were run through a *pre-processor" command file that produced an
expanded command file capable of building and downloading a VAXELN executable sys-
tem. The benchmark output, which normally would have appeared on the target machine's
console, was re-routed to a file on the host. It was also possible to create a bootable floppy
disk; as a test, several executable VAXELN images were created as both a bootable floppy
disk and a file to be downloaded from the host. Virtually no variation in the results produced
by either method was observed, so the downloadable file became the preferred method
since it could be fully controlled from the host.

All benchmarks were compiled with VAXELN Ada's default optimizations turned on.2 The
benchmarks contained code to prevent the language feature of interest from being op-
timized away. Runtime checks were not suppressed, and, apart from the Michigan
exception-handling problem noted below, the benchmarks' source code was not modified in
any way. Benchmark results are listed in the appendices.

2.5. Problems Encountered and Lessons Learned
A number of minor problems were encountered during the running of the benchmarks; these
are noted below in the appropriate results section. The one major problem that arose only
appeared after most of the Michigan tests had been run: negative time values were pro-
duced for some of the tests (Dynamic Storage Allocation and Subprogram Overhead tests).
An investigation revealed that the VAXELN paging mechanism lengthened the execution
times of loops that spanned a page boundary. (Physical memory on the VAXELN target is
divided into 512-byte pages; however, no swapping to disk took place since disk support
was not included. The benchmarks were entirely resident in memory.) Thus the control
loop of some benchmarks would actually take longer to run than the test loop, and the ex-
ecution time of the language feature being measured (expressed as the difference of the

2The compiler performs a number of standard optimizations, including: elimination of common sub-
expressions; removal of invariant computations from loops; in-line code expansion; global assignment of vari-
ables to registers; peephole optimization of instruction sequences; and elimination of dead code. K these
optimizations are not desired, the user must explicitly disable them by invoking an option with the compile
command.

CMU/SEI-87-TR-27 3

test and control times) would sometimes be negative. A more detailed discussion of the
so-called "dual loop problem" can be found in [1]. A complete report on the problems en-
countered during the AEST benchmarking effort, and a discussion of other possible bench-
marking pitfalls, Is contained in [2].

Another interesting issue is the accuracy of times reported by the PIWG benchmarks. One
of the PIWG benchmark support packages, A000032.ADA, contains the body of the ITERA-
TION package. This package is called by a benchmark program to calculate, among other
things, the minimum duration for the test loop of a benchmark run. The minimum duration is
computed to be the larger of 1 second, 100 times System.Tick, and 100 times
Standard.Duration'Small. The idea appears to be (a) to run the benchmark for enough
iterations to overcome the problem of the relatively coarse resolution of the Calendar.Clock
function, and (b) to provide a relative accuracy of one percent or better. The times reported
by the benchmark programs are printed with an accuracy of one tenth of a microsecond;
however, merely running the test for a specific minimum duration does not guarantee this
degree of accuracy. If the clock resolution is 10 milliseconds, for example, and the desired
accuracy is to within I microsecond, then the test should be run for 10,000 iterations. For
Ada language features that execute in tens of microseconds, running for a specific duration
may ensure enough iterations for accuracy to within one microsecond; this is not so for lan-
guage features that take longer.

In general, the accuracy of the PIWG and Michigan benchmarks is to within one tick of
Calendar.Clock divided by the number of iterations of the benchmark (see the Basic Meas-
urement Accuracy section of the University of Michigan report). The University of Michigan
benchmarks typically run for 10,000 iterations, and so are accurate to within 1 microsecond
for VAXELN Ada (10 millisecond Calendar.Clock resolution). The task creation tests and
some of the dynamic storage allocation tests run for fewer iterations, probably because of
the amount of storage they use up; the reduced accuracy is noted in the appropriate sec-
tions. Also, the source of the exception-handling tests had to be modified to reduce the
number of iterations so that the test would actually run. For the PIWG tests, a table of
iteration counts and resultant accuracy is provided in the PIWG results appendix.

Comparison of the results from the most closely equivalent PIWG and Michigan benchmarks
has been hindered by the accuracy problem and the dual loop problem. Even when the
correction factors are applied to take care of the former, the precise effects of the dual loop
problem on each benchmark program are not known. It is clear that more work needs to be
done to resolve such problems.

The VAXELN benchmarking effort was essentially a learning experience. The major les-
sons learned were:

It is very Important to check the underlying assumptions incorporated in the
benchmark design before attempting to use the benchmark. A simple example
of such a check is a "calibration" routine to check whether or not a dual loop
test with textually identical loops will zero out.

4 CMU/SEI-87.TR-27

L_

* Even when few or no problems are encountered during the running of the
benchmarks, the results should be checked for reasonableness, especially if
the times reported are different from heuristically calculated figures.

* Inspection of generated assembly code (however distasteful this might be to an
Ada aficionado) can turn up clues to puzzling results. Once problems start oc-
curring, knowledge of the machine's Instruction set architecture and underlying
hardware can prove very useful.

The major result of the VAXELN MicroVAX benchmarking effort, therefore, is not a list of
numbers to be taken at face value; rather, It is an appreciation of the problems and pitfalls
facing the would-be benchmarker. Analysis of the results from the VAXELN and other
cross-compilers and target systems, as well as analysis of the benchmarks themselves, will
be one of the main items of business in the AEST Project's second year.

CMU/SEI-87-TR-27 5

6 CMU/SEI.87-TR-27

References
[1] Altman, N. A., and Weiderman, N. H.

Timing Variation in Dual Loop Benchmarks.
Technical Report SEI-87-TR-21, Software Engineering Institute, September, 1987.

[2] Altman, N. A.
Factors Causing Unexpected Variations in Ada Benchmarks.
Technical Report SEI-87-TR-22, Software Engineering Institute, September, 1987.

[3] Broido, Michael D.
Response to Clapp et al: Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 30(2):169-171, February, 1987.

[4] Clapp, Russell M., et al.
Toward Real-Time Performance Benchmarks for Ada.
Communications of the ACM 29(8):760-778, August, 1986.

[5] Curnow, H. J., and Wichmann, B. A.
A Synthetic Benchmark.
The Computer Journal 19(1):43-49, February, 1976.

[6] VAXELN User's Guide.
Digital Equipment Corp., 1985.

[7] VAXELN Release Notes.
Digital Equipment Corp., 1986.

(8] VAXELN Ada User's Manual.
Digital Equipment Corp., 1986.

[9] Donohoe, P.
A Survey of Real-Time Performance Benchmarks for the Ada Programming

Language.
Technical Report SEI-87-TR-28, Software Engineering Institute, December, 1987.

[10] Harbaugh, S., and Forakis, J.
Timing Studies Using a Synthetic Whetstone Benchmark.
Ada Letters 4(2):23-34, 1984.

[11] Weicker, Reinhold P.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10):1013-1030, October, 1984.

CMU/SEI-87-TR-27 7

I

:3

I

A

-a

-j

8 CMU/SEI-87-TR27
0

Appendix A: Results: University of Michigan
* Benchmarks

In the results presented below, certain lines of output have been omitted for the sake of
brevity. Many of the Michigan tests print out lines of "raw data," and the command files

Ssometimes run a particular test many times; these are the lines that have been omitted.
Also, some of the headings have been split over two lines to make them fit this document.

A.a. Clock Calibration and Overhead

_ One of the Michigan "tests" merely prints the values of System.Tick and
Standard.Duration'Small. For VAXELN Ada these are:

System Tick= 0.009948730468750 seconds
Duration Small= 0.000061035156250 reconds

Thus System.Tck is approximately 10 milliseconds, and Duration'Small is approximately
61 microseconds. The clock calibration test determines the resolution of the
Calendar.Clock function. As can be seen from the data below, the resolution is 10 mil-
liseconds, the value of System.Tck.

Output of second differencing is as follows:
Number zeros previous: 94
Time difference (in seconds): 0.009948730468750
Number zeros previous: 0
Time difference (in seconds): -0.009948730468750
Number zeros previous: 112
Time difference (in seconds): 0.009948730468750

Number zeros previous: 112
Time difference (in seconds): 0.009948730468750
Number zeros previous: 0
Time difference (in seconds): -0.009948730468750
Number of iterations = 10000

It should be noted that the negative times above are a legitimate result of the test and have
nothing to do with the dual loop problem discussed earlier.

The test to measure the overhead associated with calling Calendar.Clock produced consis-
tently repeatable results, so only one line of output is shown:

Clock function calling overhead : 84.00 microseconds

CMU/SEI-87-TR-27 9

A.b. Task Rendezvous
For this test, a procedure calls the single entry point of a task; no parameters are passed,
and the called task executes a simple accept statement. According to the Michigan report,
it Is assumed that such a rendezvous will Involve at least two context switches.

Rendezvous time o parameters passed
Number of iterations = 10000

Task rendezvous time : 1585.0 microseconds

A.c. Task Creation
These tests measure the composite time taken to elaborate a task's specification, activate
the task, and terminate the task. The coarse resolution of the clocks available at the time
the tests were developed did not allow for measurement of the individual components of the
test. Also, because these tests are run for 100 iterations, the reported times are accurate to
100 microseconds, or 0.1 milliseconds.

To obtain the third test result below, the VAXELN pool size (which determines the number of
VAXELN objects that can be in simultaneous use) had to be Increased from the default of
384 blocks to 1024 blocks (a block is 512 bytes).

Task elaborate, activate, and terminate time:
Declared object, no type
Number of iterations = 100

Task elaborate, activate, terminate time: 9.7 milliseconds

Task elaborate, activate, and terminate time:
Declared object, task type
Number of Itexations = 100

Task elaborate, activate, terminate time: 9.5 milliseconds

Task elaborate, activate, and terminate time:
NEW object, task type
Number of iterations = 100

Task elaborate, activate, terminate time: 8.9 milliseconds

A

10 CMU/SEI-87-TR-27
6

A.d. Exception Handling
The exception-handling benchmark kept crashing with a STORAGEERROR exception de-
spite many attempts to tailor the storage parameters of the VAXELN system build process.
Eventually it was made to run by reducing the number of iterations of the test from 1000 to
100. This was the only case where benchmark code had to be modified. A possible reason
for the problem (see the Memory Management section) Is the lack of storage reclamation
(garbage collection) procedures; space used during exception-handling probably remains al-
located after the exception-raising procedure exits. The reduced number of iterations
means that the times shown below are accurate only to within 100 microseconds.

Number of iterations a 100

Exception Handler Tests

Zxception raised and handled in a block

0.0 uSzC. User defined, not raised
799.6 uSEC. User defined
999.8 uSEC. Constraint error, implicitly raised
999.8 uSzC. Constraint error, explicitly raised
499.9 uSEC. Numeric error, implicitly raised
999.8 uSEC. Numeric error, explicitly raised
999.8 uSEC. Tasking error, explicitly raised

Exception raised in a procedure and handled in the
calling unit

0.0 uSEC. User defined, not raised
900.3 uSEC. User defined

1000.4 uSEC. Constraint error, implicitly raised
1000.4 uSEC. Constraint error, explicitly raised
800.2 uSEC. Numeric error, inlicitly raised
1000.4 uSEC. Numeric error, explicitly raised
1000.4 uSEC. Tasking error, explicitly raised

CMU/SEI-87-TR-27 11

A-e. Time and Duration Math
In the results below, the lines flagged with an asterisk are from tests that had to be run
individually to get them to work. When Included in a command file that ran all of the tests
sequentially, these two tests would always cause VAXELN Ada to generate a runtime error
message saying that the "computed year Is not in the range of subtype YEARNUMBER."

Number of Iterations - 10000

Time and Duration Math

uSzC. Operation

90.00 Time := Var time + var duration
94.00 Tim := Var time + const duration
89.00 Time : Var duration + var time
94.00 Tim :- Const duration + var time

* 93.00 Tim : Var tinL - var duration
* 94.00 Tim :- Var time - const duration

103.00 Duration :=7Var time - var time
3.00 Duration : Var duration + var duration
3.00 Duration :- Var duration + const duration
3.00 Duration := Const duration + varduration
4.00 Duration :- Const duration + const duration
3.00 Duration := Var duration - var duration
4.00 Duration : Var duration - const duration
3.00 Duration : Const duration - var duration
3.00 Duration Const duration - const duration

12 CMU/SEI-87-TR.27

- * b-- mlk l ii | I|
I

IA

.-

A.f. Delay Statement Tests
For VAXELN Ada System.Tick is 10 milliseconds and Standard.Duratlon'Small is 61
microseconds. In the results below, the desired delay times start at Duration'Small and
Increment by Duration'Small. The actual delay time of 0.01996 seconds is twice
System.Tick; 0.02997 is three times System.Tick; and 0.03998 Is four times System.Tick.
Thus the smallest delay that can be achieved by a delay statement in the VAXELN imple-
mentation Is approximately 20 milliseconds.

Number of iterations 1 1

For case number 1
Desired delay time: 0.00006 seconds

- Actual delay time: 0.01996 seconds

For case number 2
Desired delay time: 0.00012 seconds
Actual delay time: 0.01996 seconds

For case number 164
Desired delay time: 0.01001 seconds
Actual delay time: 0.01996 seconds

For case number 165
Desired delay time: 0.01007 seconds
Actual delay time: 0.02997 secondsII
For case number 328
Desired delay time: 0.02002 seconds
Actual delay time: 0.02997 seconds

For case number 329
Desired delay time: 0.02008 seconds
Actual delay time: 0.03998 seconds

For case number 350
Desired delay time: 0.02136 seconds
Actual delay time: 0.03998 seconds

CMU/SEI-87-TR-27 13

A.g. Dynamic Storage Allocation
There are three categories of allocation measured by these tests:

1. Fixed Storage Allocation: The objects are declared locally in a subprogram or
declare block; the storage required Is known at compile time but is allocated
at run time.

2. Variable Storage Allocation: Same as for fixed allocation, but the storage re-
quired (e.g., In the case of an array with variable bounds) is not known at com-
pile time.

3. Explicit Dynamic Allocation: Storage is allocated via the new allocator.

These tests were the first to exhibit symptoms of the "dual loop" problem (negative times)
referred to earlier in this report.

Number of iterations = 10000

Dynamic Allocation in a Declarative Region

Time I # Declared I Type I Size of
(microsec.) I I Declared I Object

-5.0 1 10 lInteger
-1.0 1 10 Integer
-16.0 1 100 lInteger I
-3.0 1 1 1String 1 1
-3.0 1 1 IString 1 10
-3.0 1 1 IString I 100
-1.0 1 1 IEnumeration
-2.0 I 10 lEnumeration
-26.0 I 100 lEnumeration
-4.0 1 1 lInteger array 1 1
-4.0 1 1 Integer array i 10
-1.0 1 1 lInteger array I 100
-2.0 1 1 lInteger array 1 1000
13.0 1 1 11-D Dynamically bounded array 1 1
22.0 1 1 I-D Dynamically bounded array I 10
19.0 1 1 12-D Dynamically bounded array 1 1
25.0 1 1 12-D Dynamically bounded array I 100
42.0 1 1 13-D Dynamically bounded array 1 1
41.0 1 1 13-D Dynamically bounded array 1 1000
-5.0 1 1 IRecord of integer 1 1
-4.0 1 1 IRecord of integer I 10
-1.0 1 1 lRecord of integer I 100

A

14 CMU/SEI-87-TR-27

Because these tests only Iterate 1000 times, the reported times are accurate to within 10
microseconds, rather than 1 microsecond.

Nunber of iterations - 1000

Dynamic Allocation with NEW allocator

Time I # Declared I Type I Size of I
(microsec.) I I Declared I Object I

280.0 I 1 IInteger I II
280.0 1 1 lInumeration 1
280.0 I 1 IRecord of integer 1 1 1
290.0 I 1 IRecord of integer 1 10 1
280.0 I 1 IRecord of integer 1 100 1
280.0 1 1 IRecord of integer 1 20 1
290.0 I 1 IRecord of integer 1 5 1
290.0 I 1 IRecord of integer 1 50 1
290.0 I 1 Integer array 1 1 l
290.0 1 1 lInteger array 10 I

290.0 1 1 Ilnteger array 100 1
290.0 1 1 llnteger array 1000 I
290.0 1 1 IString 1 1
290.0 1 1 IstrIng 10 1
300.0 1 String 100 1
310.0 1 1 11-D Dynamically bounded array 1 .
310.0 1 1 11-D Dynamically bounded array 10 I
340.0 1 1 12-D Dynamically bounded array 1
340.0 1 1 12-D Dynamically bounded array 100
390.0 1 1 13-D Dynamically bounded array 1 I
390.0 1 1 13-D Dynamically bounded array 1000

CMU/SEI-87-TR-27 15

m

A.h. Subprogram Overhead
Several kinds of subprogram overhead benchmarks are provided. They measure the over-
head involved in entering and exiting a subprogram with no parameters, with various num-
bers of scalar parameters, and with various numbers of composite objects (arrays and
records) as parameters. Tests are also provided to measure the overhead associated with
passing constraint information to subprograms whose formal parameters are of an uncon-
strained composite type. All of the tests include passing parameters in all three modes: In,
out, and In out.

All of the tests also measure the difference in overhead between calling subprograms in
different packages and calling subprograms In the same package. For intra-package calls,
there are also versions of the tests to measure the overhead of using the INLINE pragma, if
the pragma is supported.3 Finally, all the tests for inter- and intra-package calls are
repeated with the subprograms appearing as part of a generic. These tests determine the
overhead associated with executing generic instantiations of the code.

The subprogram overhead tests were the second major source of negative time values.
The negative numbers for these tests were generally a lot smaller than those produced by
the dynamic storage allocation tests.

Subprogram Overhead (non-generic)

Number of iterations a 10000 * 10 J

Time IDirectionl# Passedl Type I Size of I
(microsec.)l Passed lin Call I Passed iPassed Varl

1 0.8 1 1 01
1 0.2 I 1 1 INTZGZR .

0.0 1 0 1 1 1 INTGER
1 0.7 I 10 1 1 IINTEGER
I -0.1 i 1 10 IINTEGER

0.1 1 0 10 IINTEGER
13.2 I 10 I lo INTEGER

1 134.6 I I I 100 IINTEGER
1 197.4 1 0 1 100 INTZGER
I 303.6 I I_0 1 100 IINTEGER

continued ...

-4

3VAXELN Ada supports the INLINE pragma.

16 CMU/SEI-87-TR-27

1 -0.2 1 I 1 1 INOMRATIOH
1 0.0 1 0 1 1 IZW TMTUO

0.6 I ;0 I 1 IKNUIURATIOU I
0.4 1 1 10 IZNUEU ATIOU

-1.4 1 0 1 10 IjZmIORATIOtI
2.0 I 0 10 IMURATItI

135.3 I 100 I MOjZ RATICI I
188.8 0 100 IZNMRATIOI

1 294.5 I 10 1 100 IENUIUATIOU
1 1.7 1 I 1 IARRAY of INTEGER 1
1 -1.8 0 1 1I ARRAY of INTEGER 1
1 -0.1 I O 1 IARRAY of INTEGER 1

0.1 1 1 IARAY of INTEGER 10
0.0 0 1 [ARRAY of INTEGER 10
0.8 I 0 1 IARRAY of INTEGER 10

-1.2 I 1 IARRAY o INTEGER 100
0.0 0 1 IARRAY of INTEGER 100

1 0.4 I 10 1 1 IARRA of INTEGER 100
0.2 I 1 IRECORD of INTEGER 1 1 I
0.1 1 0 1 1 IRECORD of INTEGER I 1 I
0.2 1 I0 1 1 IRECORD of INTEGER 1 1 1

1 -0.4 1 1 1 IRECORD of INTEGER 1 100 1
1 0.5 1 0 1 IRZCORD of INTEGER 1 100 1
1 2.8 I I_0 1 1 I1RCORD of INTEGER 1 100 1

-0.2 1 1 1 IUNCISTRAINED ARRAY 1 1 1
-0.2 1 0 1 IUNCOUSTRAINE ARRAY 1
1.5 I I0 I 1 IUNCONSTRAIn ARRAY 1 1 I

1 -0.3 1 I 1 1 IUNCCUSTRAINED ARRAY 1 100 1
1 -0.3 1 0 1 1 IUNCOUSTRAINED ARRAY 1 100 1

S0.1 1 I_0 1 IUNCOUSTRAINED ARRAY 1 100 1
-1.2 I 1 IUNCONSTRA ED RECORDI 1 I

1 0.2 1 0 1 IUNCONSTRAINED RECORDI 1 I
1 0.1 I 10 I 1 I UCCESTRAIn RECORDI 1 I

0.1 i I I 1 IUNCONSTRAINED RECORDI 100 1
I -0.4 I 0 1 1 IUNCONSTRAINED RECORDI 100 1
1 0.1 I 1_0 1 1 IUNCONSTRAINED RECORDI 100 1

CMU/SEI-87-TR-27 17

Subprogram Overhead (inline)

Mumber of iterations - 10000 * 10

Time IDirectionI# Passedi Type I Size of I
(mi rosec.) I Passed lin Call I Passed IPassed Var I

1 0.9 1 1 0 I
1 0.3 1 1 1 1 IZTIGIR

-0.1 1 0 1 INTEGER I
0.7 I 1O 1 INTGRI
0.1 1 I 1 10 INTZGZRI

-0.2 1 0 10 INTGER I I
13.2 I 0 10 1INTEGER
134.5 I 100 INTEGER
197.5 0 loo INTEGER
303.9 I 0 100 INTEGER

1 -0.2 I 1 IENUMERATION
1 -0.1 o 1 ENUMERATION

0.7 I 10 1 1 EINUMRATION
0.2 I 1 10 NMEMATION

-1.5 1 0 1 10ENUMERATION
2.1 1 10 10 IENUMERATION

1 135.2 1 I 1 100 IINMWRATION
1 188.6 1 0 1 100 IENUMERATION

294.2 I 0 1 100 ENUMERTION
1.7 1 I 1 1 IARRAY of INTEGER 1

-1.9 1 0 1 1 IARRAY of INTEGER 1
1 -0.1 I ;_0 1 1 IARRAY of INTEGER 1 1 1

0.0 1 1 I 1 ARRAY of INTEGER 1 10 1
-0.4 1 0 1 ARRAY of INTEGER 10

1 0.9 I ;0 1 ARRAY of INTEGER 10
-1.4 1 1 ARRAY of INTEGER 100

1 -0.2 1 0 1 ARRAY of INTEGER 100
1 0.4 I _0 1 1 IARRAY of INTEGER 100
1 0.0 1 1 1 1 IRECORD of INTEGER 1 1 1

0.1 0 1 IRECORD of INTEGER 1 1 1
0.1 1 I_0 1 1 IRECORD of INTEGER 1 1

I -0.6 1 1 1 1 IRECORD of INTEGER 1 100 1
1 0.6 1 0 1 1 IRECORD of INTEGER 1 100 1

2.9 I 0 1 RECORD of INTEGER 1 100 1
... continued

18 CMU/SEI-87.TR.27

-- --- --

0.1 1 1 1 1 IUMNOSTRkINID ARRAY I 1I

I -0.2 1 0 1 1 IUMNOSTRAXNED ARRAY 1 1
2 .5 1 3;0 1 1 IuNCONSTRAZNZD ARRAY 1 1 1

I -0.5 1 1 1 1 IUECOMSTRAINID ARRAY 1 100 1
I -0.4 1 0 I 1 fUNCOMSTRAZUZD ARRAY 1 100 1

0.0 1 10 1 1 UMCOUSTPJLNNDARRAYI 100 1
I -1.4 I 1 1 IUNCOUSTRAINIM RICORDI 1 1

*I 0.3 1 0 1 1 1 MNCONSTRAXnZ RICORD I 1 I
*1 0.0 1 ;10 1 1 ImiCQIsTmAIUZD RICORDI 1 I

1 -0.2 1 1 1 1 IUNCONSTRAINED RECORDI 100 1
1 -0.6 1 0 1 1 SUNCOUSTRAInoD RECORDI 100 1
1 -0.1 1 1_0 1 1 IUNCONSTRAINED RICORDI 100 I

CMU/SEI-87-TR-27 19

Subprogram Overhead (non-goeric, cros package)

Nunber of iterations - 10000 * 10

Time IDirectionI# Passed Type I Size of
(microsec.) I Passed I in Call I Passed I Passed Var I

1 39.4 1 01
1 42.8 1 1 1 1 INTZGZR

45.8 0 1IITZGKRI
41.1 1 0 1 1 INTEGER
43.4 I 10 IINTZGZR,.
73.2 0 10 INTEGER

108.7 I 0 lo INTEGER
285.1 II 100 INTEGER
472.0 1 0 1 100INTZGZR

I 866.4 I 10 1 100 IINTZGZR
1 42.2 I 1 I 1 IMNURATION
1 45.7 1 0 1 1 IZNUNRATION
I 41.1 I 10 1 1 IINMRATIOI

43.9 1 1 10 INUWfRATIONII
72.0 1 0 1 10JZUMRATIOI

107.7 1 10 1 10 IZNMOMTI0I
271.4 1 I 1 100 IMU MNATION
463.1 1 0 1 100 IZNUMIhTI0I
847.9 1 1O I 100 IENUMRATION

42.8 1 I 1 ARRAY of NEGR 1
1 42.7 1 0 1 ARRAY of INTEGER 1
1 39.1 I 10 1 1 1ARRAY of INTEGER 1
1 44.1 1 1 1IARRAY of INTEGER 10
1 42.4 1 0 1AAY of INTEGER 10
1 37.9 I _0 1 ARRAY of INTEGER 10
1 55.7 1 I 1 IARRAY of INTEGER 100
1 56.7 1 0 1 ARRAY of INTEGER 100
1 51.2 I I0 1 1 1ARRAY of INTEGER 100
1 43.6 1 I 1 IRECORD of INTEGER 1
1 42.9 1 0 1 RECORD of INTEGER 1
1 38.8 I I_0 1 1 IRECORD of INTEGER 1
1 56.2 1 1 1 IRECORD of INTEGER 100
1 55.6 1 0 1 IRCORD of INTEGER 100
1 52.1 I I0 1 1 IRICORD of INTEGER 100

... continued

20 CMUISEI-87-TR-27

I 54.3 I 1 IUNCONSTRAINED ARRAY 1 13I 58.9 I 0 I 1 IDNCCUSTRAINED ARRAY 1 1
I 49.8 1 10o I I IUNCOUSTRAIXD ARRAY 1 11

1 67.5 1 1 1 1 IUNCONSTRAINED ARR.AY 1 100 1
1 71.8 I 0 1 1 UNCOUSTRXTNED ARRAYI1 100 1
1 62.5 1 I_0 1 1 UCONSTRAMND ARRAY 1 100 1
1 42.6 1 1 1 IUNCONSTRINED RE.CORD I 1 I
1 43.9 I 0 I 1 IUNCOUSTRAINED RECORDI 1 I
1 38.8 1 I _0 1 1 IUNCOt1STRAINED RZCORDI 1 1
1 55.3 1 1 1 IUNCONSTRAINED RECORDI 100 1
I 56.1 I 0 I 1 IUNCOtISTRAINED RECORDI 100 1
1 52.1 1 I_0o I 1 IUNCONSTRAInED RECORDI 100 1

CMUISEI-87-TR-27 21

Subprogram Overhead (generic)

Nunber of iterations - 10000 * 10

Time IDirectionl# PassedI Type I Size of I
(microsec.)I Passed Iin Call I Passed IPassed Varl

1 -0.3 1 I 0 1 1
1 -5.3 I 1 I 1 INTEGER
1 0.6 0 1 1 INTEGER
1 0.5 I ;0 1 1 INTEGER

0.0 I 1O INTEGER
0.1 1 0 1 1INTEGER

1 17.8 I 10 i0 INTEGERI
1 112.9 1 I 1 00 INTEGER
1 199.1 1 0 1 100 (INTEGER
1 304.4 I I_0 1 100 1 INTEGER
I -4.9 I 1 I 1 ENUMERATION
1 1.8 1 0 1 1 ENUMERATION
G -0.4 I 10 1 JENUMERATION
1 -0.4 1 I 1 10 ENUMERATION
1 -0.1 1 0 1 10 IENUMERATION
1 10.1 I I..0 1 10 IENUMERATION
1 103.8 1 I 1 100 IENUMERATION
1 191.7 1 0 100 IENUMERATION
1 295.2 I 10 1 100 ENUMERATION
1 -4.5 I I 1 1 ARRAY of INTEGER 1

0.0 1 0 1 1 1ARRAY of INTEGER 1
0.1 I 10 1 1ARRAY of INTEGER 1
-2.9 1 1I 1 ARRAY of INTEGER 10
0.1 1 0 1 1 ARRAY of INTEGER 10
0.8 1 1 -0 1 1 IARRAY of INTEGER 10

-4.1 I 1 1 ARRAY of INTEGER 100
0.1 0 1 1 IARRAY of INTEGER 100
0.0 I 10 I 1 1ARRAY of INTEGER 100

1 -4.4 I I 1 1 IRECORD of INTEGER 1
1 0.0 1 0 1 1 IRECORD of INTEGER 1
8 0.0 I I0 1 1 (RECORD of INTEGER I
1 -3.9 1 I 1 1 IRECORD of INTEGER 100
1 0.0 1 0 1 1 IRECORD of INTEGER 100
1 0.0 I I0 1 1 IRECORD of INTEGER 1 100

22 CMU/SEI-87-TR-27

Subprogram Overhead (generic, cross package)

Nurber of iterations - 10000 * 10

Tim IDixectionj# Passed Type I Size of I
(microsec.) I Passed lin Call I Passed IPassed Varl

a I 14.3 II 01
15.1 I INTEGERI
19.8 0 1 INTEGER

1 24.6 I 10 I 1 INTEGER
1 23.7 1 I 1 10 INTEGER
1 51.6 0 10 INTEGER

89.5 I 0 10 INTEGER
277.4 I 100 INTEGER
442.2 1 0 1 100 INTEGER
831.5 I 10 in IINTEGER

1 14.4 1 1IENUMERATION
1 19.1 0 1IENUMERATION
1 24.7 I 10 1 1IENUHDRATION
1 25.8 I 10 IENUMERATION

52.2 0 1 10 ENUMERATION
89.3 I 10 0 IENUMERATION

1 281.6 1 I 1 100 IENUMERATION
422.5 1 0 I 100 ENMRRATION

1 814.2 1 10 100 NUIATION
1 14.4 1 I 1 ARRAY of INTEGER 1
1 15.5 I 0 1 1 IARRAY of INTEGER 1 1 1
1 19.4 I 10 I 1 ARRAY of INTEGER 1 1 1
1 20.7 I 1I 1 ARRAY of INTEGER 1 10 1
1 25.3 1 0 1 1 ARRAY of INTEGER 1 10 1

h 22.4 I 10 1 1 ARRAY of INTEGER 1 10 1
1 21.9 1 1 1 IARRAY of INTEGER 1 100 1
1 25.0 0 1 IARRAY of INTEGER 1 100 1
1 23.8 I 1 0 1 1 IARRAY of INTEGER 1 100 1
I 16.1 1 I 1 1 IRECORD of INTEGER 1 1 1
1 19.7 0 1 1 IRECORD of INTEGER 1 1 1
I 19.6 I I 0 I 1 IRECORD of INTEGER 1 1 1
1 21.9 I I 1 1 IRECORD of INTEGER 1 100 1
1 24.1 1 0 1 1 IRECORD of INTEGER 1 100 1
1 23.8 1 I 0 1 IRECORD of INTEGER 1 100 1

CMU/SEI-87-TR-27 23

.4

A.I. Memory Management
There are no timing results produced by these tests; they are used to determine whether or
not garbage collection takes place. They attempt to allocate up to ten million Integers by
successively allocating 1000-integer arrays using the new allocator. Only the last test ex-
plicitly attempted to free any allocated storage (using UNCHECKEDDEALLOCATION).
The tests were designed either to report how much storage they allocated before the ex-
pected STORAGEERROR exception occurred, or a message saying they had succeeded. 5
Running the tests confirmed that garbage collection did not occur; reclamation of storage is
only done when explicitly requested. This may be the reason why the exception-handling
tests would not run until the number of iterations was reduced (see the Exception Handling
section).

An additional test included with the memory management tests uses a first differencing
scheme to determine the scheduling discipline of the target operating system. This test was
not run because it was already known that VAXELN is a pre-emptive priority-based system.

.2

J

24 CMUISEI-87-TR-27

I

Appendix B: Results: PIWG Benchmarks
All of the PIWG tests, with the exception of the Hennessy benchmark (see below), ran with- -4

out problems and without the need to tailor the VAXELN system-build process. The G tests
(Text_10 tests) and the Z tests (compilation tests) were not run. None of the PIWG tests
produced negative numbers.

The output of each PIWG benchmark program contains a terse description of the feature
being measured. For any further details, the user will have to inspect the benchmark code.
The reported "Wall Timeo is based on calls to the Calendar.Clock function. The reported
"CPU-Time" is based on calls to the PIWG function CPUJTIMECLOCK. This function is
intended to provide an interface to host-dependent CPU-time measurement functions on
multi-user systems where calls to Calendar.Clock might return misleading results. For the
VAXELN MicroVAX tests, the basic version of CPUTIMECLOCK, which simply calls
Calendar.Clock, was used.

Because of the issue of the accuracy of PIWG results (see Problems Encountered and Les-
sons Learned section), the table below Is provided. Note that the actual Iterations of the
benchmarks are 100 times greater than the reported iteration counts. The reported counts
are only for the main loop enclosing the control and test loops; these latter loops alway iter-
ate 100 times. The accuracy delta is computed by dividing the resolution of the
Calendar.Clock function (10 milliseconds) by the actual number of iterations.

Reported Actual Accuracy
Iteration Iterations Delta

Count in Microseconds
1 100 100.0
2 200 50.0
4 400 25.0
8 800 12.5

16 1600 6.25
32 3200 3.125
64 6400 1.5625

128 12800 0.781250
256 25600 0.390625

CMU/SEI-87-TR-27 25

!a

B.a. Composite Benchmarks

8.0.0.1. The Dhrystone Benchmark
This Is a version of the benchmark described in [11].

1.1710 is time in milliseconds for one Dhrystone

8.0.0.2. The Whetstone Benchmark
Two versions of the Whetstone benchmark [5] are provided. One uses the math library sup-
plied by the vendor (with FLOATMATHLIB for the VAXELN Ada compiler); the other has
the math functions coded within the benchmark program so that the test can be run even
when a math library is not supplied. *KWIPS" means Kilo Whetstones Per Second.

ADA Whetstone benchmark
A000092 using manufacturer's math routines

Average time per cycle 808.32 milliseconds
Average Whetstone rating: 1237 KWIPS

ADA Whetstone benchmark
A000093 using standard internal math routines

Average time per cycle : 1046.63 milliseconds
Average Whetstone rating : 955 KIPS

B.0.0.3. The Hennessy Benchmark
This is a collection of benchmarks that are relatively short in terms of program size and
execution time. Named after the person who gathered the tests, it includes such well-known
programming problems as the Eight Queens problem, the Tower of Hanoi, Quicksort, Bub- AI
ble Sort, Fast Fourier Transform, and Ackermann's Function. The Hennessy benchmark,
known as PIWG A000094, was the only PIWG benchmark that failed to execute; it crashed
with a STORAGEERROR exception. Initial attempts to resolve the problem were unsuc-
cessful. It is believed, however, that the solution lies in simply finding the right settings for
the storage parameters of the VAXELN build process.

26 CMUISEI-87-TR-27
I

B.b. Task Creation
Test ncame C000001 Class name: Tasking
CPU ti m: 9400.0 microseconds
Wall time: 9400.0 microseconds Iteration count: 2
Test description:
Task create and terminate measurement
with one task, no entries, when task is in a procedure
using a task type in a package, no select statement, no loop

Test name: C000002 Class name: Tasking
CPU time: 9549.9 microseconds
Wall time: 9549.9 microseconds Iteration count: 2
Test description:
Task create and terminate time measurement
with one task, no entries, when task is in a procedure
task defined and used in procedure, no select statement, no loop

Test name: C000003 Class nam: Tasking
CPU time: 9599.9 microseconds
Wall time: 9599.9 microseconds Iteration count: 2

*Test description:
Task create and terminate time measurement
task is in declare block of main procedure
one task, no entries, task is in the loop

CMU/SEI-87-TR-27 27

B.c. Dynamic Storage Allocation
Test name: D000001 Class name: Allocation
CPU time: 38.3 microseconds
Wall time: 38.3 microseconds Iteration count: 128
Test description:
Dynamic array allocation, use and deallocation tinm measurement
dynamic array elaboration, 1000 integers in a procedure
get space and free it in the procedure on each call

Test name: D000002 Class name: Allocation
CPU time: 4225.0 microseconds
Wall time: 4225.0 microseconds Iteration count: 4
Test description:
Dynamic array elaboration and initialization time measurement
allocation, initialization, use and deallocation
1000 integers initialized by others->l

Test name: D000003 Class name: Allocation
CPU time: 23.4 microseconds
Wall time: 23.4 microseconds Iteration count: 128
Test description:
Dynamic record allocation and deallocation tims measurement
elaborating, allocating and deallocating
record containing a dynamic array of 1000 integers

Test name: D000004 Class name: Allocation
CPU time: 5350.3 microseconds
Wall time: 5350.3 microseconds Iteration count: 2
Test description:
Dynamic record allocation and deallocation time measurement
elaborating, initializing by (DYNAMIC SIZE, (others=>1))
record containing a dynamic array of 1000 Integers

28 CMU/SEI-87-TR-27

B.d. Exception Handling
There is no E000003 test in the PIWG 8/31/86 suite.

Test name: 3000001 Class name: Exception
CPU time: 825.0 microseconds
all time: 825.0 microseconds Iteration count: 16
Test description:

I* Time to raise and handle an exception
exception defined locally and handled locally

Test name: Z000002 Class name: Exception
CPU time: 1093.8 microseconds
Wall time: 1093.8 microseconds Iteration count: 16
Test description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

Test name: 1000004 Class name: Procedure
CPU time: 881.2 microseconds
Wall time: 881.2 microseconds Iteration count: 16
Test description:
Exception raise and handle timing measurement
when exception is in a package four deep

CMU/SEI-87-TR-27 29
IL

B.e. Coding Style
Test n : 7000001 Class name: Style
CPU time: 3.9 microseconds
Wall time: 4.3 microseconds Iteration count: 256
Test description:
Tim to set a boolean flag using a logical equation
a local and a global integer are compared i
compare this test with 7000002

Test name: F000002 Class name: Style
CPU time: 2.7 microseconds
Wall time: 2.7 microseconds Iteration count: 256
Test description:

Time to set a boolean flag using an "if" test
a local and a global integer are compared
compare this test with F000001

B.f. Loop Overhead
Test name: L000001 Class name: Iteration
CPU time: 2.0 microseconds
Wall time: 2.0 microseconds Iteration count: 2
Test description:
Sinple "for" loop time
for I in I .. 100 loop
time reported is for once through loop

Test name: L000002 Class name: Iteration
CPU time: 2.5 microseconds
Wall time: 2.5 microseconds Iteration count: 2
Test description:
Sinple "while" loop time
while I <- 100 loop
time reported is for once through loop

Test name: L000003 Class name: Iteration
CPU time: 2.0 microseconds
Wall time: 2.0 microseconds Iteration count: 2
Test description:
Simple "exit" loop time
loop I:-1+1; exit when 1>100; end loop;

time reported is for once through loop

30 CMU/SEI-87-TR-27

L' .

B.g. Procedure Calls
There is no P000008 or P000009 test in the PIWG 8/31/86 suite.

Test name: PO00001 Class name: Procedure
CPU time: 0.4 microseconds
Wall time: 0.4 microseconds Iteration count: 256
Test description:
Procedure call and return time (may be zero if automatic inlining)
procedure is local
no parameters

Test name: P000002 Class name: Procedure
CPU time: 54.7 microseconds
Wall time: 55.5 microseconds Iteration count: 128
Test description:
Procedure call and return time
procedure is local, no parameters
when procedure is not inlinable

Test name: P000003 Class name: Procedure
CPU time: 42.2 microseconds
Wall time: 42.2 microseconds Iteration count: 128

* Test description:
Procedure call and return time measurement
the procedure is in a separately compiled package
compare to P000002

i Test name: P000004 Class name: Procedure
CPU time: 0.0 microseconds
Wall time: 0.0 microseconds Iteration count: 256
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
pragma INLINE used
compare to P000001

Test name: P000005 Class name: Procedure
CPU time: 44.5 microseconds
Wall time: 44.5 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in INTEGER

CMU/SEI-87-TR-27 31

Test name: P000006 Class name: Procedure
CPU time: 48.4 microseconds
Wall time: 48.4 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, out INTEGER

Test name: 1000007 Class name: Procedure
CPU ti me: 51.6 microseconds
Wall time: 51.6 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
procedure is in a separately compiled package
one parameter, in out INTEGER

Test name: P000010 Class name: Procedure
CPU time: 74.2 microseconds
Wall time: 74.2 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
Compare to P000005
10 parameters, in INTEGER

Test name: P000011 Class name: Procedure
CPU time: 106.2 microseconds
Wall time: 106.2 microseconds Iteration count: 64
Test description:
Procedure call and return time measurement
compare to P000005, P000010
20 parameters, in INTEGER

Test name: P000012 Class name: Procedure
CPU time: 65.6 microseconds
Wall time: 65.6 microseconds Iteration count: 128
Test description:
Procedure call and return time measurement
Compare with P000010 (discrete vs composite parameters)
10 parameters, in MYRECORD a three component record

Test name: P000013 Class name: Procedure
CPU time: 93.8 microseconds
Wall time: 93.8 microseconds Iteration count: 64
Test description:
Procedure call and return time measurement
twenty composite "in" parameters
package body is compiled after the spec is used

32 CMU/SEI-87-TR-27

B.h. Task Rendezvous
Test name: T000001 Class name: Tasking
CPU time: 1662.5 microseconds
Wall time: 1662.5 microsecond Iteration count: 8
Test description:
Minim rendezvous, entry call and return time
one task, one entry, task inside procedure
no select

Test name: T000002 Class name: Tasking
CPU tim.: 1637.5 microseconds
Wall time: 1650.0 microseconds Iteration count: 8
Test description:
Task entry call and return time measured
one task active, one entry in task, task in a package
no select statement

Test name: T000003 Class name: Tasking
CPU time: 1675.0 microseconds
Wall time: 1675.0 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
two tasks active, one entry per task, tasks in a package
no select statement

Test name: T000004 Class name: Tasking
CPU time: 1837.5 microseconds
Wall time: 1837.5 microseconds Iteration count: 4
Test description:
Task entry call and return time measured
one task active, two entries, tasks in a package
using select statement

Test name: T000005 Class name: Tasking
CPU time: 1689.9 microseconds A
Wall time: 1689.9 microseconds Iteration count: 1
Test description:
Task entry call and return time measured
ten tasks active, one entry per task, tasks in a package
no select statement

CMU/SEI47-TR-27 33

Test nme: T000006 Class name: Tasking
CFU time: 2429.9 microseconds
Wall time: 2419.9 microseconds Iteration count: 1
Test description:
Task entry call and return tim measurenmnt
one task with ten entries, task in a package
one select statement, coMpare to T000005

Test name: T000007 Class name: Tasking
CPU tim: 1612.5 microseconds
Wall time: 1600.0 microseconds Iteration count: 8
Test description:
Minimum rendezvous, entry call and return time
one task one entry
no select

34 CMU/SEI-87-TR-27

